The

Complete
Reference

C++: The Complete Reference

to define the nature of an object, and it is C++'s basic unit of encépsulation. This

In C++, the class forms the basis for object-oriented programming. The class is used
chapter examines classes and objects in detail.

Classes

Classes are created using the keyword class. A class declaration defines a new type
that links code and data. This new type is then used to declare objects of that class.
Thus, a class is a logical abstraction, but an object has physical existence. In other
words, an object is an instaitce of a class.

A class declaration is similar syntactically to a structure. In Chapter 11, a simplified
general form of a class declaration was shown. Here is the entire general form of a
class declaration that does not inherit any other class.

class class-name {

private data and functions
access-specifier:

data and functions
access-specifier:

data and functions
/1 .
access-specifier:

data and functions
| object-list;

The object-list is optional. If present, it declares objects of the class. Here, access-specifier
is one of these three C++ keywords:

public
private

protected

By default, functions and data declared within a class are private to that class
and may be accessed only by other members of the class. The public access specifier
allows functions or data to be accessible to other parts of your program. The protected
access specifier is needed only when inheritance is involved (see Chapter 15). Once
an access specifier has been used, it remains in effect until either another access
specifier is encountered or the end of the class declaration is reached.

You may change access specifications as often as you like within a class declaration.
For example, you may switch to public for some declarations and then switch back to
private again. The class declaration in the following example illustrates this feature:

Chapter 12: Classes and Objects 291 - -

#include <iostream>
#include <cstring>
using namespace std;
class employee {

char name[80]; // private by default

public:
void putname{(char *n); // these are public
void getname (char *n);

private:
double wage; // now, private again

public:

void putwage (double w); // back to public
double getwage();
}i

void employee: :putname (char *n)
{
strcpy (name, n);

void employee::getname(char *n)
{

strcpy (n, name);

void employee: :putwage (double w)
{

wage = w;

double employee: :getwage()
{

return wage;

int main()

{
employee ted;
char name[80];

ted.putname ("Ted Jones") ;
ted.putwage (75000) ;

292

C++: The Complete Reference

ted.getname (name) ;
cout << name << " makes $";
cout << ted.getwage() << " per year.";

return 0;

Here, employee is a simple class that is used to store an employee's name and wage.
Notice that the public access specifier is used twice.

Although you may use the access specifiers as often as you like within a class
declaration, the only advantage of doing so is that by visually grouping various parts
of a class, you may make it easier for someone else reading the program to understand
it. However, to the compiler, using multiple access specifiers makes no difference.
Actually, most programmers find it easier to have only one private, protected, and
public section within each class. For example, most programmers would code the
employee class as shown here, with all private elements grouped together and all
public elements grouped together:

class employee {
char name[801];
double wage;

public:
void putname (char *n);
void getname (char *n});
void putwage (double w);
double getwage() ;

}i

Functions that are declared within a class are called member functions. Member
functions may access any element of the class of which they are a part. This includes
all private elements. Variables that are elements of a class are called member variables
or data members. (The term instance variable is also used.) Collectively, any element of
a class can be referred to as a member of that class.

There are a few restrictions that apply to class members. A non-static member
variable cannot have an initializer. No member can be an object of the class that is
being declared. (Although a member can be a pointer to the class that is being
declared.) No member can be declared as auto, extern, or register.

In general, you should make all data members of a class private to that class. This
is part of the way that encapsulation is achieved. However, there may be situations in
which you will need to make one or more variables public. (For example, a heavily

Chapter 12: Classes and Objects 293

used variable may need to be accessible globally in order to achieve faster run times.)
When a variable is public, it may be accessed directly by any other part of your
program. The syntax for accessing a public data member is the same as for calling a
member function: Specify the object's name, the dot operator, and the variable name.
This simple program illustrates the use of a public variable:

#include <iostream>
using namespace std;

class myclass {
public:

int i, j, k; // accessible to entire program

Y

int main()
{

myclass a, b;
a.i = 100; // access to i, j, and k is OK
a.j = 4;

a.k = a.1 * a.j;

b.k = 12; // remember, a.k and b.k are different

cout << a.k << " " << b.k;

return 0;

___| structures and Classes Are Related

Structures are part of the C subset and were inherited from the C language. As you
have seen, a class is syntactically similar to a struct. But the relationship between a
class and a struct is closer than you may at first think. In C++, the role of the structure
was expanded, making it an alternative way to specify a class. In fact, the only difference
between a class and a struct is that by default all members are public in a struct and
private in a class. In all other respects, structures and classes are equivalent. That is,

in C++, a structure defines a class type. For example, consider this short program, which
uses a structure to declare a class that controls access to a string:

. // Using a structure to define a class.
#include <iostream>

#include <cstring>

294 C++: The Complete Reference

using namespace std;

struct mystr {
void buildstr{char *s); // public
void showstr () ;

private: // now go private
char str{255];

Yo

void mystr::buildstr(char *s)

{
if(!*s) *str = '\0'; // initialize string
else strcat(str, s);

void mystr::showstr ()

{
cout << str << "\n";

}

int main()

{
mystr s;
s.buildstr(""); // init
s.buildstr("Hello ");
s.buildstr ("there!");
s.showstr () ;
return 0;

This program displays the string Hello there!.
The class mystr could be rewritten by using class as shown here:

class mystr {
char str([255];

public:
void buildstr (char *s); // public
void showstr () ;

Yo

Chapter 12: Classes and Objects 295

You might wonder why C++ contains the two virtually equivalent keywords struct
and class. This seeming redundancy is justified for several reasons. First, there is no
fundamental reason not to increase the capabilities of a structure. In C, structures
already provide a means of grouping data. Therefore, it is a small step to allow them to
include member functions. Second, because structures and classes are related, it may be
easier to port existing C programs to C++. Finally, although struct and class are virtually
equivalent today, providing two different keywords allows the definition of a class to
be free to evolve. In order for C++ to remain compatible with C, the definition of struct
must always be tied to its C definition.

Although you can use a struct where you use a class, most programmers don't.
Usually it is best to use a class when you want a class, and a struct when you want a
C-like structure. This is the style that this book will follow. Sometimes the acronym
POD is used to describe a C-style structure—one that does not contain member
functions, constructors, or destructors. It stands for Plain Old Data.

Remember In C++, a structure declaration defines a class fype.

___| Unions and Classes Are Related

Like a structure, a union may also be used to define a class. In C++, unions may
contain both member functions and variables. They may also include constructors
and destructors. A union in C++ retains all of its C-like features, the most important
being that all data elements share the same location in memory. Like the structure,
union members are public by default and are fully compatible with C. In the next
example, a union is used to swap the bytes that make up an unsigned short integer.
(This example assumes that short integers are 2 bytes long.)

#include <iostream>
using namespace std;

unicn swap_byte {
void swapl();
void set_byte(unsigned short 1i);
void show_word();

unsigned short u;
unsigned char c[2];

void swap_byte: :swap ()
{

i

296 C++: The Complete Reference

unsigned char t;

t = c[0];
cl[0] = c[1];
c[l] = t;

void swap_byte: :show_word()
{

cout << u;

void swap_byte::set_byte (unsigned short i)

int main()

{
swap_byte b;

b.set_byte(49034);
b.swap () ;

b.show_word () ;

return 0;

Like a structure, a union declaration in C++ defines a special type of class. This
means that the principle of encapsulation is preserved.

There are several restrictions that must be observed when you use C++ unions.
First, a union cannot inherit any other classes of any type. Further, a union cannot be
a base class. A union cannot have virtual member functions. (Virtual functions are
discussed in Chapter 17.) No static variables can be members of a union. A reference
member cannot be used. A union cannot have as a member any object that overloads
the = operator. Finally, no object can be a member of a union if the object has an explicit
constructor or destructor function.

As with struct, the term POD is also commonly applied to unions that do not contain
member functions, constructors, or destructors.

Anonymous Unions

There is a special type of union in C++ called an anonymous union. An anonymous
union does not include a type name, and no objects of the union can be declared.

Chapter 12: Classes and Objects

Instead, an anonymous union tells the compiler that its member variables are to
share the same location. However, the variables themselves are referred to directly,
without the normal dot operator syntax. For example, consider this program:

#include <iostream>
#include <cstring>
using namespace std;

int main()
{
// define anonymous union
union {
long 1;
double d;
char s{47];
Yo

// now, reference union elements directly
1 = 100000;

cout << 1 << " "}

d = 123.2342;

cout << d << " "y

strcpy (s, “hi");

cout << s;

return 0;

}

As you can see, the elements of the union are referenced as if they had been
declared as normal local variables. In fact, relative to your program, that is exactly how
you will use them. Further, even though they are defined within a union declaration,
they are at the same scope level as any other local variable within the same block. This
implies that the names of the members of an anonymous union must not conflict with
other identifiers known within the same scope.

Al restrictions involving unions apply to anonymous ones, with these additions.
First, the only elements contained within an anonymous union must be data. No
member functions are allowed. Anonymous unions cannot contain private or
protected elements. Finally, global anonymous unions must be specified as static.

Friend Functions

It is possible to grant a nonmember function access to the private members of a class
by using a friend. A friend function has access to all private and protected members

297

298 C++: The Complete Reference

of the class for which it is a friend. To declare a friend function, include its prototype
within the class, preceding it with the keyword friend. Consider this program:

#include <iostream>

using namespace std;

class myclass {
int a, b;

public:
friend int sum{myclass x);
void set_ab(int i, int 3j);

}i

void myclass::set_ab(int i, int j)

o
1!

3

// Note: sum() is not a member function of any class.
int sum(myclass x)
{
/* Because sum() is a friend of myclass, it can
directly access a and b. */

return x.a + X.b;
int main()
{
myclass n;
n.set_ab(3, 4);

cocut << sum(n);

return 0;

In this example, the sum() function is not a member of myclass. However, it still
has full access to its private members. Also, notice that sum() is called without the use
of the dot operator. Because it is not a member function, it does not need to be (indeed,
it may not be) qualified with an object's name.

Chapter 12: Classes and Objects

Although there is nothing gained by making sum() a friend rather than a member
function of myclass, there are some circumstances in which friend functions are quite
valuable. First, friends can be useful when you are overloading certain types of operators
(see Chapter 14). Second, friend functions make the creation of some types of I/O
functions easier (see Chapter 18). The third reason that friend functions may be desirable
is that in some cases, two or more classes may contain members that are interrelated
relative to other parts of your program. Let's examine this third usage now.

To begin, imagine two different classes, each of which displays a pop-up message
on the screen when error conditions occur. Other parts of your program may wish
to know if a pop-up message is currently being displayed before writing to the screen
so that no message is accidentally overwritten. Although you can create member
functions in each class that return a value indicating whether a message is active,
this means additional overhead when the condition is checked (that is, two function
calls, not just one). If the condition needs to be checked frequently, this additional
overhead may not be acceptable. However, using a function that is a friend of each
class, it is possible to check the status of each object by calling only this one function.
Thus, in situations like this, a friend function allows you to generate more eff1c1ent
code. The following program illustrates this concept:

#include <iostream>
using namespace std;

const int IDLE = 0O;
const int INUSE = 1;

class C2; // forward declaration

class C1 {
int status; // IDLE if off, INUSE if on screen
//
public:
void set_status(int state);
friend int idle(Cl a, C2 b);
Y

class C2 {
int status; // IDLE if off, INUSE if on screen
!/
public:
void set_status(int state);
friend int idle(Cl a, C2 b);
Y

C++: The Complete Reference

void Cl::set_status(int state)
{

status = state;

void C2::set_status(int state)
{

status = state;

int idle(Cl a, C2 b)

{
if (a.status || b.status) return 0;
else return 1;

int main()
{

Cl x;

C2 y;

x.set_status (IDLE) ;
y.set_status (IDLE) ;

if (idle(x, y)) cout << "Screen can be used.\n";
else cout << "In use.\n";

X.set_status (INUSE) ;

if (idle(x, y)) cout << "Screen can be used.\n";
else cout << "In use.\n";

return 0;

Notice that this program uses a forward declaration (also called a forward reference)
for the class C2. This is necessary because the declaration of idle() inside C1 refers
to C2 before it is declared. To create a forward declaration to a class, simply use the
form shown in this program.

A friend of one class may be a member of another. For example, here is the
preceding program rewritten so that idle() is a member of C1:

Chapter 12: Classes and Objects

#include <iostream>
using namespace std;

const int IDLE = 0;
const int INUSE = 1;

class C2; // forward declaration

class Cl {
int status; // IDLE if off, INUSE if on screen
//

public:
vold set_status(int state);
int idle(C2 b); // now a member of Cl

Y

class C2 {
int status; // IDLE if off, INUSE if on screen
//

public:

void set_status(int state);
friend int Cl::idle(C2 b);
Y

void Cl::set_status{int state)

{

status = state;

void C2::set_status(int state)
{
status = state;

// idle() is member of Cl, but friend of C2
int Cl::idle(C2 b)
{

if(status || b.status) return 0;

else return 1;

int main()

{

C++

: The Compiete Reference

Cl x;
C2 y;

x.set_status (IDLE) ;
v.set_status (IDLE) ;

if(x.idle(y)) cout << "Screen can be used.\n";
else cout << "In use.\n";

x.set_status (INUSE) ;

if(x.idle(y)) cout << "Screen can be used.\n";
else cout << "In use.\n";

return 0;

Because idle() is a member of C1, it can access the status variable of objects of type
C1 directly. Thus, only objects of type C2 need be passed to idle().

There are two important restrictions that apply to friend functions. First, a derived
class does not inherit friend functions. Second, friend functions may not have a
storage-class specifier. That is, they may not be declared as static or extern.

Friend Classes

It is possible for one class to be a friend of another class. When this is the case, the
friend class and all of its member functions have access to the private members
defined within the other class. For example,

Y

// Using a friend class.
#include <iostream>
using namespace std;

class TwoValues {

int a;
int b;

public:

TwoValues (int i, int j) { a = i; b = j; }
friend class Min;

class Min {

Chapter 12: Classes and Objects 303

public:
int min(TwoValues x);

}s

int Min::min(TwoValues x)
{

return x.a < X.b ? x.a : X.b;

int main()

{
TwoValues ob (10, 20);
Min m;

cout << m.min(ob) ;

return 0;

In this example, class Min has access to the private variables a and b declared within
the TwoValues class.

It is critical to understand that when one class is a friend of another, it only has
access to names defined within the other class. It does not inherit the other class.
Specifically, the members of the first class do not become members of the friend class.

Friend classes are seldom used. They are supported to allow certain special case
situations to be handled.

___| Inline Functions

There is an important feature in C++, called an inline function, that is commonly used
with classes. Since the rest of this chapter (and the rest of the book) will make heavy
use of it, inline functions are examined here.

In C++, you can create short functions that are not actually called; rather, their code
is expanded in line at the point of each invocation. This process is similar to using a
function-like macro. To cause a function to be expanded in line rather than called,
precede its definition with the inline keyword. For example, in this program, the
function max() is expanded in line instead of called:

#include <iostream>
using namespace std;

C++: The Complete Reference

inline int max(int a, int b)
{

return a>b ? a : b;

int main()
{
cout << max (10, 20);
cout << " " << max(99, 88);

return 0;

As far as the compiler is concerned, the preceding program is equivalent to this one:

#include <iostream>
using namespace std;

int main()

{

cout << (10>20 2 10 : 20);
cout << " " << (99>88 ? 99 : 88):

return 0;

The reason that inline functions are an important addition to C++ is that they allow
you to create very efficient code. Since classes typically require several frequently
executed interface functions (which provide access to private data), the efficiency of
these functions is of critical concern. As you probably know, each time a function is
called, a significant amount of overhead is generated by the calling and return
mechanism. Typically, arguments are pushed onto the stack and various registers are
saved when a function is called, and then restored when the function returns. The
trouble is that these instructions take time. However, when a function is expanded in
line, none of those operations occur. Although expanding function calls in line can
produce faster run times, it can also result in larger code size because of duplicated
code. For this reason, it is best to inline only very small functions. Further, it is also
a good idea to inline only those functions that will have significant impact on the
performance of your program.

Like the register specifier, inline is actually just a request, not a command, to the
compiler. The compiler can choose to ignore it. Also, some compilers may not inline

Chapter 12: Classes and Objects

all types of functions. For example, it is common for a compiler not to inline a recursive
function. You will need to check your compiler's documentation for any restrictions
to inline. Remember, if a function cannot be inlined, it will simply be called as a
normal function.

Inline functions may be class member functions. For example, this is a perfectly
valid C++ program:

#include <iostream>

using namespace std;

class myclass {
int a, b;

public:
void init(int i, int j);
void show() ;

}i

// Create an inline function.
inline void myclass::init (int i, int i)

// Create another inline function.
inline void myclass::show()
{

cout << a << " " << b << "\n";

int main()
{

myclass x;

x.init (10, 20);
x.show() ;

return 0;

Note | The inline keyword is not part of the C subset of C++. Thus, it is not defined by C89.
’ However, it has been added by C99.

306 C++: The Complete Reference

Defining Inline Functions Within a Class

It is possible to define short functions completely within a class declaration. When a
function is defined inside a class declaration, it is automatically made into an inline
function (if possible). It is not necessary (but not an error) to precede its declaration
with the inline keyword. For example, the preceding program is rewritten here with
the definitions of init() and show() contained within the declaration of myclass:

#include <iostream>

using namespace std;

class myclass {

int a, b;
public:

// automatic inline

void init(int i, int j) { a=1i; b=7j; }

void show() { cout << a << " " << b << "\n"; }
}i

int main{)
{

myclass x;

x.init (10, 20);
x.show() ;

return 0;

Notice the format of the function code within myclass. Because inline functions are
often short, this style of coding within a class is fairly typical. However, you are free
to use any format you like. For example, this is a perfectly valid way to rewrite the
myclass declaration:

#include <iostream>
using namespace std;

class myclass {
int a, b;

public:
// automatic inline
void init(int i, int 3J)
{

a = i;

Chapter 12: Classes and Objects

vold show ()}

{

cout << a << " " << b << "\n";

}i

Technically, the inlining of the show() function is of limited value because (in
general) the amount of time the /O statement will take far exceeds the overhead
of a function call. However, it is extremely common to see all short member functions
defined inside their class in C++ programs. (In fact, it is rare to see short member
functions defined outside their class declarations in professionally written C++ code.)
Constructor and destructor functions may also be inlined, either by default, if
defined within their class, or explicitly.

Parameterized Constructors

It is possible to pass arguments to constructors. Typically, these arguments help
initialize an object when it is created. To create a parameterized constructor, simply
add parameters to it the way you would to any other function. When you define the
constructor's body, use the parameters to initialize the object. For example, here is a
simple class that includes a parameterized constructor:

#include <iostream>
using n&mespace std;

class myctass {
int a, b;

public:
myclass (int i, int j) {a=1i; b=j;}
void show() {cout << a << " " << b;}

}i
int main{()
{
myclass ob(3, 5);

ob.show() ;

return 0;

307

308 C++:The Complete Reference

Notice that in the definition of myclass(), the parameters i and j are used to give initial
values to aand b.

The program illustrates the most common way to specify arguments when you
declare an object that uses a parameterized constructor. Specifically, this statement

l myclass ob{(3, 4);
causes an object called ob to be created and passes the arguments 3 and 4 to the i and j

parameters of myclass(). You may also pass arguments using this type of declaration
statement:

myclass ob = myclass (3, 4);

However, the first method is the one generally used, and this is the approach taken
by most of the examples in this book. Actually, there is a small technical difference
between the two types of declarations that relates to copy constructors. (Copy
constructors are discussed in Chapter 14.)

Here is another example that uses a parameterized constructor. It creates a class
that stores information about library books.

#include <iostream>
#include <cstring>
using namespace std;

const int IN = 1;
const int CHECKED_OUT = 0;

class book {
char author[407;
char title[40];
int status;

public:
book (char *n, char *t, int s);
int get_status() {return status;}

void set_status(int s) {status = s;}
void show() ;

Y

book: :book(char *n, char *t, int s)

{

strcpy (author, n);

Chapter 12: Classes and Objects

strcpy(title, t);
status = s;

void book: :show()

{
cout << title << " by " << author;
cout << " ig ";
if (status==IN) cout << "in.\n";

else cout << "out.\n";

int main()

{

book bl ("Twain", "Tom Sawyer", IN);

book b2 ("Melville", "Moby Dick", CHECKED_QOUT);
bl.show() ;

b2 .show() ;

return 0;

Parameterized constructors are very useful because they allow you to avoid having
to make an additional function call simply to initialize one or more variables in an
object. Each function call you can avoid makes your program more efficient. Also,
notice that the short get_status() and set_status() functions are defined in line, within
the book class. This is a common practice when writing C++ programs.

Constructors with One Parameter: A Special Case

If a constructor only has one parameter, there is a third way to pass an initial value to
that constructor. For example, consider the following short program.

#include <iostream>

using namespace std;

class X {
int a;
public:

3.1.0 C++: The Complete Reference

X(int 3} { a = 3; }
int geta() { return a; }
}s
int main()
X ob = 99; // passes 99 to j

cout << ob.getal(); // outputs 99

return 0;

Here, the constructor for X takes one parameter. Pay special attention to how ob

is declared in main(). In this form of initialization, 99 is automatically passed to the j
parameter in the X() constructor. That is, the declaration statement is handled by the
compiler as if it were written like this:

X cb = X(99);

In general, any time you have a constructor that requires only one argument, you
can use either ob(i) or ob = i to initialize an object. The reason for this is that whenever
you create a constructor that takes one argument, you are also implicitly creating a
conversion from the type of that argument to the type of the class.

Remember that the alternative shown here applies only to constructors that have
exactly one parameter.

___| static Class Members

Both function and data members of a class can be made static. This section explains the
consequences of each.

Static Data Members

When you precede a member variable’s declaration with static, you are telling the
compiler that only one copy of that variable will exist and that all objects of the class
will share that variable. Unlike regular data members, individual copies of a static
member variable are not made for each object. No matter how many objects of a class
are created, only one copy of a static data member exists. Thus, all objects of that class
use that same variable. All static variables are initialized to zero before the first object
is created.

Chapter 12: Classes and Objects 311

When you declare a static data member within a class, you are not defining it. (That
is, you are not allocating storage for it.) Instead, you must provide a global definition
for it elsewhere, outside the class. This is done by redeclaring the static variable using
the scope resolution operator to identify the class to which it belongs. This causes storage
for the variable to be allocated. (Remember, a class declaration is simply a logical
construct that does not have physical reality.)

To understand the usage and effect of a static data member, consider this program:

#include <iostream>
using namespace std;

class shared {
static int a;
int b;
public:
void set(int i, int j) {a=1i; b=3j;}

void show();
Yo

int shared::a; // define a

void shared: :show()
{
cout << "This is static a: " << a;
cout << "\nThis is non-static b: " << b;

cout << "\n";

int main{)
{

shared x, v

x.set(l, 1); // set a to 1

x.show();

y.set (2, 2); // change a to 2
y.show() ;

x.show(); /* Here, a has been changed for both x and y
because a is shared by both objects. */

return 0O;

312

C++: The Complete Reference

This program displays the following output when run.

This
This
This
This
This
This

is
is
is
is
is

is

static a: 1
non-static b: 1
static a: 2
non-static b: 2
static a: 2
non-static b: 1

Notice that the integer a is declared both inside shared and outside of it. As
mentioned earlier, this is necessary because the declaration of a inside shared does
not allocate storage.

| Note_|

As a convenience, older versions of C++ did not require the second declaration of a
static member variable. However, this convenience gave rise to serious inconsistencies

and it was eliminated several years ago. However, you may still find older C++ code
that does not redeclare static member variables. In these cases, you will need to add the
required definitions.

A static member variable exists before any object of its class is created. For example,
in the following short program, a is both public and static. Thus it may be directly
accessed in main(). Further, since a exists before an object of shared is created, a can
be given a value at any time. As this program illustrates, the value of a is unchanged
by the creation of object x. For this reason, both output statements display the same

value: 99.

public:

)

’

{

int shared::a;

shared: :a

cout <<

#include <iostream>
using namespace std;

class shared {

static int a;

// define a

int main()

// initialize a before creating any objects

99;

"This is initial value of a: " << shared::

Chapter 12: Classes and Objects 313

cout << "\n";
shared x;
cout << "This is x.a: " << x.a;

return 0;

Notice how a is referred to through the use of the class name and the scope resolution
operator. In general, to refer fo a static member independently of an object, you must
qualify it by using the name of the class of which it is a member.

One use of a static member variable is to provide access control to some shared
resource used by all objects of a class. For example, you might create several objects,
each of which needs to write to a specific disk file. Clearly, however, only one object
can be allowed to write to the file at a time. In this case, you will want to declare a
static variable that indicates when the file is in use and when it is free. Each object then
interrogates this variable before writing to the file. The following program shows how
you might use a static variable of this type to control access to a scarce resource:

#include <iostream>

using namespace std;

class cl {
static int resource;
public:
int get_resource();
void free_resource() {resource = 0;}

Y

int c¢l::resource; // define resource

int cl::get_resource()
{
if (resource) return 0; // resource already in use
else {
resource = 1;
return 1; // resource allocated to this object

314 C++: The Complete Reference

int main()
!

i

cl obl, ob2;

if (obl.get_resource()) cout << "obl has resource\n";
if(tob2.get_resource()) cout << "ob2 denied resource\n";
obl.free_resource(); // let scmecne else use it

if (ob2.get_resource())

cout << "ob2 can now use rescurce\n";

return 0;

Another interesting use of a static member variable is to keep track of the number
of objects of a particular class type that are in existence. For example,

#include <iostream>
using namespace std;

class Counter {

public:
static int count;
Counter () { count++; }
~Counter () { count--; }

bi

int Counter: :count;

void f();

int main(void)

{
Counter ol;
cout << "Objects in existence: ";
cout << Counter::count << "\n";

Counter o02;
cout << "Objects in existence: “;
cout << Counter::count << "\n";

Chapter 12: Classes and Objects 315

£0);
cout << "Objects in existence: ";

cout << Counter::count << "\n";

return 0;

void f£()
{

Counter temp;

cout << "Objects in existence: ";

cout << Counter::count << "\n";
// temp is destroyed when f() returns

This program produces the following output.

Objects in existence:
Objects in existence:
Objects 1in existence:

W N

Objects in existence:

As you can see, the static member variable count is incremented whenever an object is
created and decremented when an object is destroyed. This way, it keeps track of how
many objects of type Counter are currently in existence.

By using static member variables, you should be able to virtually eliminate any
need for global variables. The trouble with global variables relative to OOP is that they
almost always violate the principle of encapsulation.

Static Member Functions

Member functions may also be declared as static. There are several restrictions placed
on static member functions. They may only directly refer to other static members of the
class. (Of course, global functions and data may be accessed by static member functions.)
A static member function does not have a this pointer. (See Chapter 13 for information
on this.) There cannot be a static and a non-static version of the same function. A static
member function may not be virtual. Finally, they cannot be declared as const or volatile.
Following is a slightly reworked version of the shared-resource program from the
previous section. Notice that get_resource() is now declared as static. As the program
illustrates, get_resource() may be called either by itself, independently of any object, by
using the class name and the scope resolution operator, or in connection with an object.

316 C++: The Complete Reference

#include <iostream>
using namespace std;

class cl {
static int resource;
public:
static int get_resource();
void free _resource() { resource = 0; }

int cl::resource; // define resource

int cl::get_resource(}

{

if (resource) return 9; /, resource already in use
else {
resource = 1;
return 1; // resource allocated tc this object
}
}
int main{()

{
cl obl, ob2;

/* get_resource() ls static so may be called independent
of any object. */

if(cl::get_resource()) cout << 'obl has resource\n";

if(!cl::get_resourcet)) cout << "ob2 denied resource\n";

obl.ctree_resource() ;

if (ob2.get_resource()) // can still call using object syntax
cout << "ob2 can now use resource\n";

return 0;

Actually, static member functions have limited applications, but one good use
for them is to "preinitialize” private static data before any object is actually created. For
example, this is a perfectly valid C++ program:

Chapter 12: Classes and Objects 317

#include <iostream>
using namespace std;

class static_type {
static int 1;

public:
static void init(int x) {1 = x;}
void show() {cout << 1i;}

T
int static_type::i; // define i

int main()

{
// init static data before object creation
static_type::init (100);

static_type x;
x.show(); // displays 100

return 0;

___| When Constructors and Destructors
Are Executed

As a general rule, an object's constructor is called when the object comes into existence,
and an object's destructor is called when the object is destroyed. Precisely when these
events occur is discussed here.

A local object's constructor is executed when the object's declaration statement is
encountered. The destructors for local objects are executed in the reverse order of the
constructor functions.

Global objects have their constructors execute before main() begins execution. Global
constructors are executed in order of their declaration, within the same file. You cannot
know the order of execution of global constructors spread among several files. Global
destructors execute in reverse order after main() has terminated.

This program illustrates when constructors and destructors are executed:

#include <iostream>
using namespace std;

318 C++: The Complete Reference

class myclass {

public:
int who;
myclass (int id);
~myclass () ;

} glob_obl(l), glob _ob2(2);

myclass: myclass{int id)
{

cout << "Initializing " << id << "\n";
who = id;

myclass::~myclass ()

{

cout << "Destructing " << who << "\n";

int main()
{
myclass local_obl(3:;
cout << "This will not be first line displayed.\n";

myclass local_ob2(4);

return 0;

It displays this output:

Initializing
Initializing

[S R

Initializing
This will not be first line displayed.
Initializing 4

Destructing

Destructing

4
3
Destructing 2
ﬁ% Destructing 1

One thing: Because of differences between compilers and execution environments, you
may or may not see the last two lines of output.

Chapter 12: Classes and Objects 319

___| The Scope Resolution Operator

As you know, the :: operator links a class name with a member name in order to

tell the compiler what class the member belongs to. However, the scope resolution
operator has another related use: it can allow access to a name in an enclosing scope
that is "hidden" by a local declaration of the same name. For example, consider this

fragment:

int i; // global 1
void f£()

{

int i; // local i

i = 10; // uses local i

As the comment suggests, the assignmer. i = 10 refers to the local i. But what if
function f() needs to access the global version of i? It may do so by preceding the

i with the :: operator, as shown here.

int i:; // global i

void f()
{

int i; // local i

::1 = 10; // now refers to global 1

___| Nested Classes

It is possible to define one class within another. Doing so creates a nested class. Since
a class declaration does, in fact, define a scope, a nested class is valid only within
the scope of the enclosing class. Frankly, nested classes are seldom used. Because of
C++'s flexible and powerful inheritance mechanism, the need for nested classes is

virtually nonexistent.

32:0‘ C++: The Complete Reference

| Local Classes

A class may be defined within a function. For example, this is a valid C++ program:

#include <iostream>
using namespace std;

void £();

int main{()

{
£0);
// myclass not known here
return 0;

void £ ()
{
class myclass {
int i;
public:
void put_i(int n) { i=n; }
int get_i() { return i;)}
} ob;

ob.put_i(10);
cout << ob.get_it();

When a class is declared within a function, it is known only to that function and
unknown outside of it.

Several restrictions apply to local classes. First, all member functions must be
defined within the class declaration. The local class may not use or access local
variables of the function in which it is declared (except that a local class has access
to static local variables declared within the function or those declared as extern). It
may access type names and enumerators defined by the enclosing function, however.
No static variables may be declared inside a local class. Because of these restrictions,
local classes are not common in C++ programming.

1 PassingObjects to Functions

Objects may be passed to functions in just the same way that any other type of
variable can. Objects are passed to functions through the use of the standard call-by-
value mechanism. Although the passing of objects is straightforward, some rather

Chépter 12: Classes and Objects 321

unexpected events occur that relate to constructors and destructors. To understand
why, consider this short program.

// Passing an object to a function.
#include <iostream>
using namespace std;

class myclass {
int 1;
public:
myclass(int nj;
~myclass();
void set_i(int n) { i=n; }

int get_i() { return i; }

cout << "Constructing " << 1 << "\n";

myclass::~myclass ()
{

cout << "Destroying " << i << "\n";
void f (myclass ob);
int main()

{

nyclass o(l);

f(o);

cout << "This is i in main: ";
cout << o.get_1i{() << "\n";
return 0;

void f(myclass ob)

{
ob.set_1i(2);

322

C++: The Complete Reference

cout << "This is local 1i: " << ob.get_1i();
cout << "\n";

This program produces this output:

Constructing 1

This is local 1i: 2
Destroying 2

This is 1 in main: 1
Destroying 1

As the output shows, there is one call to the constructor, which occurs when o is
created in main(), but there are two calls to the destructor. Let's see why this is the case.

When an object is passed to a function, a copy of that object is made (and this copy
becomes the parameter in the function). This means that a new object comes into
existence. When the function terminates, the copy of the argument (i.e., the parameter)
is destroyed. This raises two fundamental questions: First, is the object's constructor
called when the copy is made? Second, is the object’s destructor called when the copy
is destroyed? The answers may, at first, surprise you.

When a copy of an argument is made during a function call, the normal constructor
is 1ot called. Instead, the object's copy constructor is called. A copy constructor defines
how a copy of an object is made. As explained in Chapter 14, vou can explicit!y letine
a copy constructor for a class that you create . However, if a class does not explicitly
define a copy constructor, as is the case here, then C++ provides one by defauit. The
default copy constructor creates a bitwise (that is, identical) copy of the object. The
reason a bitwise copy is made is easy to understand if you think about it. Since a normal
constructor is used to initialize some aspect of an object, it must not be called to make
a copy of an already existing object. Such a call would alter the contents of the object.
When passing an object to a function, you want to use the current state of the object,
not its initial state.

However, when the function terminates and the copy of the object used as an
argument is destroyed, the destructor is called. This is necessary because the object has
gone out of scope. This is why the preceding program had two calls to the destructor.
The first was when the parameter to f() went out-of-scope. The second is when o inside
main() was destroyed when the program ended.

To summarize: When a copy of an object is created to be used as an argument to
a function, the normal constructor is not called. Instead, the default copy constructor
makes a bit-by-bit identical copy. However, when the copy is destroved (usually by
going out of scope when the function returns), the destructor is called.

Because the default copy constructor creates an exact duplicate of the original, it
can, at times, be a source of trouble. Even though objects are passed to functions by
means of the normal call-by-value parameter passing saechanism which, in theory,

Chapter 12: Classes and Objects 323

protects and insulates the calling argument, it is still possible for a side effect to occur
that may affect, or even damage, the object used as an argument. For example, if an
object used as an argument allocates memory and frees that memory when it is
destroyed, then its local copy inside the function will free the same memory when its
destructor is called. This will leave the original object damaged and effectively useless.
To prevent this type of problem you will need to define the copy operation by creating
a copy constructor for the class, as explained in Chapter 14.

Returning Objects

A function may return an object to the caller. For example, this is a valid C++ program:

// Returning objects from a function.
#include <iostream>

using namespace std;

class myclass {

int i;
public:
void set_i(int n) { i=n; }
int get_1() { return i; }
}i
myclass f£(); // return object of type myclass

int main()

{

myclass o;

cout << o.get_i() << "\n";
return 0;

myclass f()

{

myclass x;

x.set_1i(1l);
return x;

324

C++: The Complete Reference

When an object is returned by a function, a temporary object is automatically
created that holds the return value. It is this object that is actually returned by the
function. After the value has been returned, this object is destroyed. The destruction
of this temporary object may cause unexpected side effects in some situations. For
example, if the object returned by the function has a destructor that frees dynamically
allocated memory, that memory will be freed even though the object that is receiving
the return value is still using it. There are ways to overcome this problem that involve
overloading the assignment operator (see Chapter 15) and defining a copy constructor
(see Chapter 14).

Object Assignment

Assuming that both objects are of the same type, you can assign one object to another.
This causes the data of the object on the right side to be copied into the data of the
object on the left. For example, this program displays 99:

// Assigning objects.
#include <iostream>
using namespace std;

class myclass {

int 1i;
public:
void set_i(int n) { i=n; }
int get_i() { return 1i; }
}i
int main()

{

myclass okl, obZ;

obi.set _i(99);

ob2 = obi: // assign data from obl to ob2
cout << "This is ¢b2's 1: " << ob2.get_i();
return 0;

By default, all data from one object is assigned to the other by use of a bit-by-bit
copy. However, it is possible to overload the assignment operator and define some
other assignment procedure (see Chapter 15).

